On the inclusion of channel's time dependence in a hidden Markov model for blind channel estimation
نویسندگان
چکیده
In this paper, the theory of hidden Markov models (HMM) is applied to the problem of blind (without training sequences) channel estimation and data detection. Within a HMM framework, the Baum–Welch (BW) identification algorithm is frequently used to find out maximum-likelihood (ML) estimates of the corresponding model. However, such a procedure assumes the model (i.e., the channel response) to be static throughout the observation sequence. By means of introducing a parametric model for time-varying channel responses, a version of the algorithm, which is more appropriate for mobile channels [time-dependent Baum-Welch (TDBW)] is derived. Aiming to compare algorithm behavior, a set of computer simulations for a GSM scenario is provided. Results indicate that, in comparison to other Baum–Welch (BW) versions of the algorithm, the TDBW approach attains a remarkable enhancement in performance. For that purpose, only a moderate increase in computational complexity is needed.
منابع مشابه
Taylor Expansion for the Entropy Rate of Hidden Markov Chains
We study the entropy rate of a hidden Markov process, defined by observing the output of a symmetric channel whose input is a first order Markov process. Although this definition is very simple, obtaining the exact amount of entropy rate in calculation is an open problem. We introduce some probability matrices based on Markov chain's and channel's parameters. Then, we try to obtain an estimate ...
متن کاملSemi-Blind Channel Estimation based on subspace modeling for Multi-user Massive MIMO system
Channel estimation is an essential task to fully exploit the advantages of the massive MIMO systems. In this paper, we propose a semi-blind downlink channel estimation method for massive MIMO system. We suggest a new modeling for the channel matrix subspace. Based on the low-rankness property, we have prposed an algorithm to estimate the channel matrix subspace. In the next step, using o...
متن کاملIntrusion Detection Using Evolutionary Hidden Markov Model
Intrusion detection systems are responsible for diagnosing and detecting any unauthorized use of the system, exploitation or destruction, which is able to prevent cyber-attacks using the network package analysis. one of the major challenges in the use of these tools is lack of educational patterns of attacks on the part of the engine analysis; engine failure that caused the complete training, ...
متن کاملSpeech enhancement based on hidden Markov model using sparse code shrinkage
This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework based on the independent component analysis (ICA). We propose analytical procedures for training clean speech and noise models by the Baum re-estimation algorithm and present a Maximum a posterior (MAP) estimator based on Laplace-Gaussian (for clean speech and noise respectively) combination in the HMM ...
متن کاملBlind channel estimation and data detection using hidden Markov models
In this correspondence, we propose applying the hidden Markov models (HMM) theory to the problem of blind channel estimation and data detection. The Baum–Welch (BW) algorithm, which is able to estimate all the parameters of the model, is enriched by introducing some linear constraints emerging from a linear FIR hypothesis on the channel. Additionally, a version of the algorithm that is suitable...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE Trans. Vehicular Technology
دوره 50 شماره
صفحات -
تاریخ انتشار 2001